Copied to
clipboard

G = C42.39Q8order 128 = 27

39th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.39Q8, C23.547C24, C22.2392- 1+4, C22.3222+ 1+4, C4.8(C42.C2), C428C4.39C2, C424C4.27C2, C429C4.35C2, (C2×C42).621C22, (C22×C4).157C23, C22.136(C22×Q8), C2.C42.266C22, C23.65C23.68C2, C23.83C23.26C2, C23.81C23.27C2, C2.23(C23.41C23), C2.55(C22.36C24), C2.31(C22.35C24), C2.31(C22.34C24), (C2×C4).133(C2×Q8), C2.20(C2×C42.C2), (C2×C4).667(C4○D4), (C2×C4⋊C4).373C22, C22.419(C2×C4○D4), SmallGroup(128,1379)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.39Q8
C1C2C22C23C22×C4C2×C4⋊C4C23.65C23 — C42.39Q8
C1C23 — C42.39Q8
C1C23 — C42.39Q8
C1C23 — C42.39Q8

Generators and relations for C42.39Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2c2, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=b-1, bd=db, dcd-1=c-1 >

Subgroups: 308 in 180 conjugacy classes, 100 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C424C4, C428C4, C429C4, C23.65C23, C23.81C23, C23.83C23, C42.39Q8
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C42.C2, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42.C2, C22.34C24, C22.35C24, C22.36C24, C23.41C23, C42.39Q8

Smallest permutation representation of C42.39Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 124 35 30)(2 121 36 31)(3 122 33 32)(4 123 34 29)(5 44 104 72)(6 41 101 69)(7 42 102 70)(8 43 103 71)(9 62 95 82)(10 63 96 83)(11 64 93 84)(12 61 94 81)(13 80 107 60)(14 77 108 57)(15 78 105 58)(16 79 106 59)(17 90 111 51)(18 91 112 52)(19 92 109 49)(20 89 110 50)(21 55 115 88)(22 56 116 85)(23 53 113 86)(24 54 114 87)(25 67 119 39)(26 68 120 40)(27 65 117 37)(28 66 118 38)(45 125 73 99)(46 126 74 100)(47 127 75 97)(48 128 76 98)
(1 125 117 42)(2 98 118 69)(3 127 119 44)(4 100 120 71)(5 122 47 39)(6 31 48 66)(7 124 45 37)(8 29 46 68)(9 109 59 85)(10 18 60 55)(11 111 57 87)(12 20 58 53)(13 21 63 52)(14 114 64 90)(15 23 61 50)(16 116 62 92)(17 77 54 93)(19 79 56 95)(22 82 49 106)(24 84 51 108)(25 72 33 97)(26 43 34 126)(27 70 35 99)(28 41 36 128)(30 73 65 102)(32 75 67 104)(38 101 121 76)(40 103 123 74)(78 86 94 110)(80 88 96 112)(81 89 105 113)(83 91 107 115)
(1 80 25 12)(2 57 26 95)(3 78 27 10)(4 59 28 93)(5 113 73 52)(6 24 74 92)(7 115 75 50)(8 22 76 90)(9 36 77 120)(11 34 79 118)(13 39 81 30)(14 68 82 121)(15 37 83 32)(16 66 84 123)(17 71 85 128)(18 44 86 99)(19 69 87 126)(20 42 88 97)(21 47 89 102)(23 45 91 104)(29 106 38 64)(31 108 40 62)(33 58 117 96)(35 60 119 94)(41 54 100 109)(43 56 98 111)(46 49 101 114)(48 51 103 116)(53 125 112 72)(55 127 110 70)(61 124 107 67)(63 122 105 65)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,124,35,30)(2,121,36,31)(3,122,33,32)(4,123,34,29)(5,44,104,72)(6,41,101,69)(7,42,102,70)(8,43,103,71)(9,62,95,82)(10,63,96,83)(11,64,93,84)(12,61,94,81)(13,80,107,60)(14,77,108,57)(15,78,105,58)(16,79,106,59)(17,90,111,51)(18,91,112,52)(19,92,109,49)(20,89,110,50)(21,55,115,88)(22,56,116,85)(23,53,113,86)(24,54,114,87)(25,67,119,39)(26,68,120,40)(27,65,117,37)(28,66,118,38)(45,125,73,99)(46,126,74,100)(47,127,75,97)(48,128,76,98), (1,125,117,42)(2,98,118,69)(3,127,119,44)(4,100,120,71)(5,122,47,39)(6,31,48,66)(7,124,45,37)(8,29,46,68)(9,109,59,85)(10,18,60,55)(11,111,57,87)(12,20,58,53)(13,21,63,52)(14,114,64,90)(15,23,61,50)(16,116,62,92)(17,77,54,93)(19,79,56,95)(22,82,49,106)(24,84,51,108)(25,72,33,97)(26,43,34,126)(27,70,35,99)(28,41,36,128)(30,73,65,102)(32,75,67,104)(38,101,121,76)(40,103,123,74)(78,86,94,110)(80,88,96,112)(81,89,105,113)(83,91,107,115), (1,80,25,12)(2,57,26,95)(3,78,27,10)(4,59,28,93)(5,113,73,52)(6,24,74,92)(7,115,75,50)(8,22,76,90)(9,36,77,120)(11,34,79,118)(13,39,81,30)(14,68,82,121)(15,37,83,32)(16,66,84,123)(17,71,85,128)(18,44,86,99)(19,69,87,126)(20,42,88,97)(21,47,89,102)(23,45,91,104)(29,106,38,64)(31,108,40,62)(33,58,117,96)(35,60,119,94)(41,54,100,109)(43,56,98,111)(46,49,101,114)(48,51,103,116)(53,125,112,72)(55,127,110,70)(61,124,107,67)(63,122,105,65)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,124,35,30)(2,121,36,31)(3,122,33,32)(4,123,34,29)(5,44,104,72)(6,41,101,69)(7,42,102,70)(8,43,103,71)(9,62,95,82)(10,63,96,83)(11,64,93,84)(12,61,94,81)(13,80,107,60)(14,77,108,57)(15,78,105,58)(16,79,106,59)(17,90,111,51)(18,91,112,52)(19,92,109,49)(20,89,110,50)(21,55,115,88)(22,56,116,85)(23,53,113,86)(24,54,114,87)(25,67,119,39)(26,68,120,40)(27,65,117,37)(28,66,118,38)(45,125,73,99)(46,126,74,100)(47,127,75,97)(48,128,76,98), (1,125,117,42)(2,98,118,69)(3,127,119,44)(4,100,120,71)(5,122,47,39)(6,31,48,66)(7,124,45,37)(8,29,46,68)(9,109,59,85)(10,18,60,55)(11,111,57,87)(12,20,58,53)(13,21,63,52)(14,114,64,90)(15,23,61,50)(16,116,62,92)(17,77,54,93)(19,79,56,95)(22,82,49,106)(24,84,51,108)(25,72,33,97)(26,43,34,126)(27,70,35,99)(28,41,36,128)(30,73,65,102)(32,75,67,104)(38,101,121,76)(40,103,123,74)(78,86,94,110)(80,88,96,112)(81,89,105,113)(83,91,107,115), (1,80,25,12)(2,57,26,95)(3,78,27,10)(4,59,28,93)(5,113,73,52)(6,24,74,92)(7,115,75,50)(8,22,76,90)(9,36,77,120)(11,34,79,118)(13,39,81,30)(14,68,82,121)(15,37,83,32)(16,66,84,123)(17,71,85,128)(18,44,86,99)(19,69,87,126)(20,42,88,97)(21,47,89,102)(23,45,91,104)(29,106,38,64)(31,108,40,62)(33,58,117,96)(35,60,119,94)(41,54,100,109)(43,56,98,111)(46,49,101,114)(48,51,103,116)(53,125,112,72)(55,127,110,70)(61,124,107,67)(63,122,105,65) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,124,35,30),(2,121,36,31),(3,122,33,32),(4,123,34,29),(5,44,104,72),(6,41,101,69),(7,42,102,70),(8,43,103,71),(9,62,95,82),(10,63,96,83),(11,64,93,84),(12,61,94,81),(13,80,107,60),(14,77,108,57),(15,78,105,58),(16,79,106,59),(17,90,111,51),(18,91,112,52),(19,92,109,49),(20,89,110,50),(21,55,115,88),(22,56,116,85),(23,53,113,86),(24,54,114,87),(25,67,119,39),(26,68,120,40),(27,65,117,37),(28,66,118,38),(45,125,73,99),(46,126,74,100),(47,127,75,97),(48,128,76,98)], [(1,125,117,42),(2,98,118,69),(3,127,119,44),(4,100,120,71),(5,122,47,39),(6,31,48,66),(7,124,45,37),(8,29,46,68),(9,109,59,85),(10,18,60,55),(11,111,57,87),(12,20,58,53),(13,21,63,52),(14,114,64,90),(15,23,61,50),(16,116,62,92),(17,77,54,93),(19,79,56,95),(22,82,49,106),(24,84,51,108),(25,72,33,97),(26,43,34,126),(27,70,35,99),(28,41,36,128),(30,73,65,102),(32,75,67,104),(38,101,121,76),(40,103,123,74),(78,86,94,110),(80,88,96,112),(81,89,105,113),(83,91,107,115)], [(1,80,25,12),(2,57,26,95),(3,78,27,10),(4,59,28,93),(5,113,73,52),(6,24,74,92),(7,115,75,50),(8,22,76,90),(9,36,77,120),(11,34,79,118),(13,39,81,30),(14,68,82,121),(15,37,83,32),(16,66,84,123),(17,71,85,128),(18,44,86,99),(19,69,87,126),(20,42,88,97),(21,47,89,102),(23,45,91,104),(29,106,38,64),(31,108,40,62),(33,58,117,96),(35,60,119,94),(41,54,100,109),(43,56,98,111),(46,49,101,114),(48,51,103,116),(53,125,112,72),(55,127,110,70),(61,124,107,67),(63,122,105,65)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim11111112244
type+++++++-+-
imageC1C2C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC42.39Q8C424C4C428C4C429C4C23.65C23C23.81C23C23.83C23C42C2×C4C22C22
# reps11114444822

Matrix representation of C42.39Q8 in GL8(𝔽5)

44000000
21000000
00400000
00040000
00004220
00000124
00004041
00003201
,
10000000
01000000
00400000
00040000
00003000
00002200
00003130
00000332
,
20000000
13000000
00320000
00020000
00003100
00000200
00000242
00000441
,
22000000
13000000
00140000
00240000
00002110
00003133
00002202
00000332

G:=sub<GL(8,GF(5))| [4,2,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,4,3,0,0,0,0,2,1,0,2,0,0,0,0,2,2,4,0,0,0,0,0,0,4,1,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,2,3,0,0,0,0,0,0,2,1,3,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,2],[2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,2,2,4,0,0,0,0,0,0,4,4,0,0,0,0,0,0,2,1],[2,1,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,2,3,2,0,0,0,0,0,1,1,2,3,0,0,0,0,1,3,0,3,0,0,0,0,0,3,2,2] >;

C42.39Q8 in GAP, Magma, Sage, TeX

C_4^2._{39}Q_8
% in TeX

G:=Group("C4^2.39Q8");
// GroupNames label

G:=SmallGroup(128,1379);
// by ID

G=gap.SmallGroup(128,1379);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,184,185,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2*c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽